University of Chicago's Department of Computer Science Assistant professor, Bill Fefferman, received a grant from the Google Research Scholar Program, which funds world-class research by early-career computer scientists. Fefferman received one of five awards in the quantum computing area.
Fefferman said that the grants would help accelerate their research goals in finding practical applications for today’s quantum computers.
Fefferman’s proposal, “Understanding the feasibility of practical applications from quantum supremacy experiments,” will explore the theoretical foundations of how current and near-future quantum computers generate certified random numbers. If confirmed, these algorithms would provide a valuable use case for quantum computing in cryptography, cryptocurrency, and other applications that require truly random keys for security.
“We’re in this really exciting era where we’re seeing quantum computers that for the first time can solve problems that are at the border of what can be computed classically,” Fefferman said. “The next step is to show that we can channel this power to solve something useful. Quantum computers, by their nature, are non-deterministic, and so they can produce random numbers. But the really interesting question is, how do you trust the quantum computer?”
Fefferman will explore that question by probing the theory underlying the random circuit sampling experiment that Google used to claim “quantum supremacy” – a task performed by a quantum computer that would be all but impossible for a classical computer — in 2019. A proposal by Scott Aaronson described a protocol to use that experiment for generating certified random numbers, but the theory requires more vetting to confirm its veracity.
“What Scott was saying is that today, with the power that Google already has with this device, you could in principle generate certified random numbers using the existing experiment, assuming a very non-standard conjecture from complexity theory.” Fefferman said. “My proposal is about giving strong evidence that this conjecture is true, which will increase our confidence that Google’s experiment can produce certified random numbers.”
This story was originally published on University of Chicago's Department of Computer Science website and edited for the purposes of the CQE. Read the full story here.