News

Quantum compiler co-created by Robert Rand named distinguished paper at POPL 21

UChicago Department of Computer Science

If programmers want to use quantum computers today or in the near future, they’re going to have to get the most out of small, error-prone machines. Fortunately, they have a helpful tool at hand: the compiler. The translators of the programming stack, compilers convert human-readable code to the explicit instructions that computing machinery, classical or quantum, need to operate. Some can even improve that code along the way, making it faster and more reliable.

A new compiler that does all of the above for today’s early quantum computers received one of seven Distinguished Paper awards this month at the 2021 Symposium on Principles of Programming Languages(POPL), one of the top conferences in programming languages research. VOQC, developed by UChicago CS assistant professor Robert Rand and collaborators at the University of Maryland, is the first verified quantum optimizer — a tool for rewriting programs to make them faster while guaranteeing that the program’s meaning is preserved.

The ecosystem of quantum compilers is still small, and new arrivals can produce a large impact in this young field. The ability of VOQC to not only get the most out of the current generation of quantum computers but also prevent errors provides a huge boost to programmers working in an exciting new paradigm.

read more