Light offers an irreplaceable way to interact with our universe. It can travel across galactic distances and collide with our atmosphere, creating a shower of particles that tell a story of past astronomical events. Here on earth, controlling light lets us send data from one side of the planet to the other.
Given its broad utility, it’s no surprise that light plays a critical role in enabling 21st century quantum information applications. For example, scientists use laser light to precisely control atoms, turning them into ultra-sensitive measures of time, acceleration, and even gravity. Currently, such early quantum technology is limited by size—state-of-the-art systems would not fit on a dining room table, let alone a chip. For practical use, scientists and engineers need to miniaturize quantum devices, which requires re-thinking certain components for harnessing light.
Now IQUIST member Gaurav Bahl and his research group have designed a simple, compact photonic circuit that uses sound waves to rein in light. The new study, published in the October 21 issue of the journal Nature Photonics, demonstrates a powerful way to isolate, or control the directionality of light. The team’s measurements show that their approach to isolation currently outperforms all previous on-chip alternatives and is optimized for compatibility with atom-based sensors.
“Atoms are the perfect references anywhere in nature and provide a basis for many quantum applications,” said Bahl, a professor in Mechanical Science and Engineering (MechSe) at the University of Illinois at Urbana-Champaign. “The lasers that we use to control atoms need isolators that block undesirable reflections. But so far the isolators that work well in large-scale experiments have proved tough to miniaturize.”
Even in the best of circumstances, light is difficult to control—it will reflect, absorb, and refract when encountering a surface. A mirror sends light back where it came from, a shard of glass bends light while letting it through, and dark rocks absorb light and converts it to heat. Essentially, light will gladly scatter every which way off anything in its path. This unwieldy behavior is why even a smidgen of light is beneficial for seeing in the dark.
Controlling light within large quantum devices is normally an arduous task that involves a vast sea of mirrors, lenses, fibers, and more. Miniaturization requires a different approach to many of these components. In the last several years, scientists and engineers have made significant advances in designing various light-controlling elements on microchips. They can fabricate waveguides, which are channels for transporting light, and can even change its color using certain materials. But forcing light, which is made from tiny blips called photons, to move in one direction while suppressing undesirable backwards reflections is tricky.