News

How to transform silicon carbide vacancies into quantum information

Argonne National Laboratory, UChicago

Written by Joseph E. Harmon

"Vacancy" is a sign you want to see when searching for a hotel room on a road trip. When it comes to quantum materials, vacancies are also something you want to see. Scientists create them by removing atoms in crystalline materials. Such vacancies can serve as quantum bits or qubits, the basic unit of quantum technology.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory and the University of Chicago have made a breakthrough that should help pave the way for greatly improved control over the formation of vacancies in , a semiconductor.

Semiconductors are the material behind the brains in cell phones, computers, medical equipment and more. For those applications, the existence of atomic-scale defects in the form of vacancies is undesirable, as they can interfere with performance. According to recent studies, however, certain types of vacancies in silicon carbide and other semiconductors show promise for the realization of qubits in quantum devices. Applications of qubits could include unhackable communication networks and hypersensitive sensors able to detect individual molecules or cells. Also possible in the future are new types of computers able to solve complex problems beyond the reach of classical computers.

"Scientists already know how to produce qubit-worthy vacancies in semiconductors such as silicon carbide and diamond," said Giulia Galli, a senior scientist at Argonne's Materials Science Division and professor of molecular engineering and chemistry at the University of Chicago. "But for practical new quantum applications, they still need to know much more about how to customize these vacancies with desired features."

In silicon carbide semiconductors, single vacancies occur upon the removal of individual silicon and  in the crystal lattice. Importantly, a carbon vacancy can pair with an adjacent silicon vacancy. This paired vacancy, called a divacancy, is a key candidate as a qubit in silicon carbide. The problem has been that the yield for converting single vacancies into divacancies has been low, a few percent. Scientists are racing to develop a pathway to increase that yield.

"To create actual defects in a sample, you shoot a beam of high-velocity electrons at it, and this knocks out individual atoms," explained Elizabeth Lee, a postdoctoral researcher in the UChicago Pritzker School of Molecular Engineering. "But that electron bombardment also creates unwanted defects."

Scientists can heal those defects by subsequently treating the sample at very high temperatures, above 1,300 degrees Fahrenheit, and cooling it down again to room temperature. The trick is to develop a process that will keep the wanted defects and heal the unwanted ones.

"By performing  at the atomic scale with high-performance computers, we can watch defects forming, moving, disappearing and rotating in a sample over time at different temperatures," said Lee. "This is something that cannot be done experimentally, at present."

Aided by a combination of sophisticated computational tools, the team's simulations tracked the pairing of individual vacancies into a divacancy. Their efforts reaped a harvest of pivotal discoveries that should pave the way for new quantum devices. One is that the more silicon vacancies there are relative to carbon vacancies at the start of heat treatment, the more divacancies afterwards. Another is the determination of the best temperatures for creating stable divacancies and for altering their orientation within the crystal structure without destroying them.

Scientists may be able to use the latter discovery for aligning the orientation of all the divacancies in the same direction. That would be highly desirable for sensing applications able to operate with many times the resolution of today's sensors.

Read more