The early days of quantum computing are full of challenges for companies and researchers racing to build the first systems that open up new computational horizons. And in computer science, one of the best ways to resolve these open questions is with a competition. Last year, IBM announced its first Quantum Open Science Challenge, presenting two targets to the research community and offering prize money and experimental time on their quantum computer.
When the results were tallied, two UChicago-affiliated researchers came out on top of their respective categories. Alexey Galda, a Research Assistant Professor in the UChicago James Franck Institute with a joint appointment at Argonne National Laboratory, was one of four winners in the competition’s graph state challenge. And while no researchers met the benchmark for the SWAP gate challenge, UChicago CS alum Pranav Gokhale was acknowledged by the company for his top-ranked solution.
Both challenges shared the ultimate goal of creating near-term quantum computers that perform more quickly and accurately, decreasing the errors and inefficiencies of present-day models. Most quantum machines operate using qubits instead of traditional computer bits, and the great potential of these units to occupy more than two states and share information via entanglement also comes with a multitude of technical challenges in both computer science and physics.
Image caption: Three unit cells of a heavy-hex lattice, the topology of all active IBM Quantum devices. (IBM)